VARIATIONAL FORMULATION OF THE
HYDRODYNAMICS OF A CONCENTRATED
GAS—SOLID SYSTEM AT HIGH
ARCHIMEDES NUMBERS

A. I. Tamarin and Yu. S. Teplitskii UDC 532.546

The local Glandsdorff— Prigogine potential is formulated for an isothermal fluidized bed. It
is shown that this variational formulation makes it possible to describe the hydrodynamics
of a fluidized bed on the basis of a numerical solution of the problem of minimizing the re-
sulting local potential for the case of a two-dimensional bed.

Two-phase concentrated (Ar = 10°%) systems of fluidized beds of the gas—solid type are widely used
in various industrial processes. The gas which filters through the bed of particles moves in a nonuniform
manner; gas bubbles devoid of particles break through the bed. The result is a sharp degradation of the
interfacial exchange in the system, and the efficiency of the corresponding equipment is reduced. This
circumstance is responsible for the interest in the phase motion in such systems.

A rigorous description of a two-phase homogeneous system can obviously be obtained by statistical
methods, but the models which have been constructed at this point are not useful for obtaining practical in-
formation. Phenomenological approaches are thus of interest. In such an approach the system is treated
as consisting of two mutually penetrating continua, for which mass, momentum, and energy conservation
laws are written [1,2]. The system of conservation equations is nonlinear and, as was shown in [2], un-
stable against small perturbations. This circumstance poses insurmountable difficulties for a numerical
solution; some additional hypothesis is required. ‘

One such hypothesis is the concept of a local potential, which has heen used successfully to solve
several problems of practical importance [3,4]. This approach reduces to seeking a minimum of a func-~
tional reflecting the stability of the fluctuations in the dynamic variables which occur in the system.

Below we attempt to apply this approach to the hydrodynamics of a concentrated two-phase system
(a fluidized bed) in which the phase concentrations vary significantly in space and time.

We consider an isothermal fluidized bed consisting of solid particles of uniform diameter, for which
we have Ar > 10%. A gas is filtering upward through the bed. The particle concentration in the system
lies in the range 0.3 < € < 0.7. We denote the velocities of the gas and the solid particles by vi and wy, re-
spectively. Each particle experiences the gravitational force and a friction force with the gas. There is
no difficulty in determining the first of these forces; the friction force can be found from Newton's friction
law
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where ni are the direction cosines of the normal to some area with an arbitrary orientation in the bed.

The friction surface area (the common part of the space of the gas and solid particles) is proportional to
e(l—¢€); i.e., wehavef ~ e(l—¢g). In the linear approximation, using ovi/9xr — 0 for € — 0, in the limit,
we have nk(0vi/0xg) ~ €(vi— wi), so that the friction forces becomes
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Fy=ke? (1 —g) (0, —wy), (2)
where the coefficient k is determined from the condition that the solid particles are suspended by the gas
at the beginning of the fluidization.

In the system under consideration here we have (pg/pg) ~107%, so we can neglect changes in the
kinetic and potential energy of the gas in the gravitational field in comparision with the analogous changes
for the particles.

We further assume that in the unsteady state the gas and the solid particles have different pressures,
pf and pg, respectively, which become equal in the stable (equilibrium) state (pf = pg = pO).

Let us formulate a local potential for this system:
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The quantities with subscript "0" refer to the steady state, while quantities without subscripts refer to

the unsteady state. Here we are assuming that the deviations from the steady (stable) state are very small.
In the steady state the integral L is minimal and can be identified with the rate at which entropy is pro-
duced near the stable state.

To show that functional (3) actually describes the hydrodynamics of a fluidized bed we evaluate the
variation 6. of this functional, assuming that quantities with subscript "0" are not varied [3]:
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After some straightforward manipulations involving the use of the Gauss theorem and the assumption that
these functions are given at the boundaries of region V, we find
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After the variation, we equated the quantities with and without the subscript "0."

Accordingly, we find that the condition
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The Lagrange—Euler equations in {7), which describe the extremum of functional (3), are the conservation
equations for the masses and momenta of the phases in this two~phase system.

Accordingly, this variational problem for seeking the minimum of functional (3) is 2 method for de-
scribing the hydrodynamics of a two-phase flow which can be used instead of the system of mass and mo-
mentum conservation equations for the phases in (7).

The variational formulation is known [5] to have important advantages in a numerical solution, es-
pecially if the problem is nonlinear, is multidimensional, and has a large number of unknown functions.
Furthermore, this formulation makes it possible to obtain more information about the system than can be
obtained with Eqgs. (7). For example, for the case of a fluidized bed we can obtain from the variational
principle an additional equation for determining the bed height H, which does not remain constant as the
gas filters through the bed.

First let us put the problem in a slightly more concrete form. We consider a fluidized bed of par-
ticles (the velocity corresponding to the beginning of fluidization is vy) in a cylindrical column of radius
R; the bed height is H. Gas filters through the bed at a velocity Nv,, where N is the fluidization number.
We treat the three-dimensional problem, in which all properties of the bed depend on the coordinates z
and r and the time t. We write the functional in (3) in the dimensionless form
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Here we have introduced the dimensionless variables '
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An approximate solution of this problem has been found by the Ritz method [5]. The coordinate
functions were chosen to be
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In the first approximation we have
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In this approach we assume the following picture for the motion [6]: gas bubbles break through and solid
material moves upward at the center of the bed, while at the walls the material is descending and there
are no gas bubbles.

After the trial functions are substituted into (8) and the integration is carried out, the functional be-
comes an algebraic function of aJi and a?]: '

L'=L'@, o, H, ..); (9)
its extremum is governed by the system of Ritz equations (¢ L'/aa]i) = 0. A preliminary analysis of this
system shows that (a) the average particle concentrations in the upward and downward parts of the flow are
equal (af = af), in accordance with the available experimental data [7]; (b) in the fluidized bed the masses
of the solid particles are conserved,
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and then we have the familiar relation between the pressure drop in the bed and the weight of the material,
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Fig. 1. Particle concentration in the bed and amplitude
of the concentration fluctuations as functions of the flu-
idization number. 1) als, 2) a?; 3) ew [9].
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TABLE 1. Material Concentration and Relative Amplitude of the
Fluctuations in This Concentration as Functions of the Fluidization

Number
; Fluidization number
. i

Material concentration ? vp CIm/sec 5 5 2 . 0 50 o0
. i 2 0,43 | 0,40 { 0,38 | — | 0,37 | 0,40 | 0,39
B! s 0,38 10,37 10,201 0,31 | — | — |0,29
a3 ' 1,0411,35 | 1,37 ] — 11,43 1,00 1,03
at | 5 1,031,321 1,831,641 — | — |1,90

and (c) there is a linear relationship between the amplitudes of the pressure and particle-concentration
fluctuations in the system,

) 0.8l
Qg = — dg.

0

These results show that this model reflects the experimental fact that the hydraulic drag {pressure drop}
of a boling bed is independent of the gas filtration velocity.

The coefficients aji are determined by numerically minimizing the function (9) by the method of

steepest descent [8]. The solution was carried out on an MIR-1 computer.

The calculations were carried out for two materials, differing in the velocity at which fluidization
begins (vy = 2 and 5 cm/sec), for gas filtration velocities from 2v; to 60v,.

All the coefficients a% turned out to be real, implying an oscillatory nature of the changes in all the
functions over space and time. Self-oscillations of the phase velocity, pressure, and density appear in this

two-phase system, although the energy is supplied to this system by a steady-state flow of a uniformly
filtering gas.

The first approximation found from this solution gives a very crude description. It is interesting to
compare it with experiment and thus to test the proposed formulation and solution of the problem of the
hydrodynamics of a two-phase flow.

Figure 1 shows the calculated average material concentration in the bed and data on the amplitude of
the concentration fluctuations. These curves were plotted for a single material (vy = 2 cm/sec); the ex-
perimental points shown are the average particle concentrations in the core of a bed of silica gel fluidized
by air (v = 2 cm/sec), obtained on the basis of measurements of the bed expansion [9].

The experimental and calculated curves are equidistant. Interestingly, the material concentration
in the boiling bed changes only slightly as the velocity at which the gas filters through the bed is increased
significantly. For example, when the fluidization number is increased from 2 to 20 the fluidized bed ex-
pands by no more than 20%, according to both experiment and calculation.

1t is also interesting to note that the amplitude of the concentration fluctuations is slightly above its
average value; this circumstance can be seen particularly clearly in Table 1, which shows the relative
amplitude of the concentration fluctuations for two materials. The quantity a;c’/azi‘3 is always larger than
one. Accordingly, in a fluidized system there are regions devoid of particles in which the concentration
is extremely low. These regions are gas bubbles moving upward through the bed of disperse material.
According to the calculated data, these regions move at a velocity {(vp = Nvya) which increases linearly
with increasing filtration velocity. The conclusions obtained from the mathematical model agree well with
available experimental data on the motion of a gas in an inhomogeneous fluidized bed and on the velocities
of the gas bubbles moving through such beds.

Accordingly, this variational formulation reveals the average motion of the phases in a two-phase
concentrated system of the boiling-bed type. ’
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Ar = (gd®/v?) (pg — 01/ 0¢)

NOTATION

is the Archimedes number;

a = vp/Nv, is the dimensionless velocity at which a gas bubble rises;
b is the relative radius of the ascending part of the motion of the boiling bed;
d is the particle diameter;
E = py/psVs is the Euler number;
Fr = vi/gH is the Froude number;
g is the acceleration due to gravity;
H is the bed height;
k is the friction coefficient;
k; = Hk/pgvy is the dimensionless friction coefficient;
ni is the direction cosines;
N is the fluidization number;
Pf> Ps are the gas and particle pressures, respectively;
Pf = Pt/ Do p's = pg/Py are the corresponding dimensionless pressures;
Dy is the atmospheric pressure;
R is the column radius;
t is the time;
' =t/T, is the dimensionless time;
T, = H/Nv, is the time-integration inverval;
A% is the bed volume;
Vi, Wi are the gas and particle velocities;
vi = vi/ vy, wi = Wi/ vy are the corresponding dimensionless velocities;
vy is the velocity corresponding to the beginning of fluidization;
€ is the particle concentration;
v is the kinematic viscosity;
Pfs Pg are the gas and particle densities;
v =H/R
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